home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler, for Sun SPARC.
- Copyright (C) 1988 Free Software Foundation, Inc.
- Contributed by Michael Tiemann (tiemann@mcc.com).
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /* Note that some other tm- files include this one and then override
- many of the definitions that relate to assembler syntax. */
-
- /* Specify library to handle `-a' basic block profiling. */
-
- #define LIB_SPEC "%{a:/usr/lib/bb_link.o} \
- %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} "
-
- /* Provide required defaults for linker -e and -d switches.
- Also, it is hard to debug with shared libraries,
- so don't use them if going to debug. */
-
- #define LINK_SPEC "%{!e*:-e start} -dc -dp %{g:-Bstatic} %{static:-Bstatic} %{-Bstatic}"
-
- /* Special flags to the Sun-4 assembler when using pipe for input. */
-
- #define ASM_SPEC " %{pipe:-} "
-
- /* Prevent error on `-sun4' option. */
-
- #define CC1_SPEC "%{sun4:}"
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- #define CPP_PREDEFINES "-Dsparc -Dsun -Dunix"
-
- /* Print subsidiary information on the compiler version in use. */
-
- #define TARGET_VERSION fprintf (stderr, " (sparc)");
-
- /* Generate DBX debugging information. */
-
- #define DBX_DEBUGGING_INFO
-
- /* Run-time compilation parameters selecting different hardware subsets. */
-
- extern int target_flags;
-
- /* Nonzero if we should generate code to use the fpu. */
- #define TARGET_FPU (target_flags & 1)
-
- /* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
- use fast return insns, but lose some generality. */
- #define TARGET_EPILOGUE (target_flags & 2)
-
- /* Nonzero if we expect to be passed through the Sun
- optimizing assembler. This requires us to generate
- code which we otherwise would not. For example,
- calls via pointers-to-functions must be output
- specially because Sun assemble does not do proper flow
- analysis for this case. */
- #define TARGET_SUN_ASM (target_flags & 4)
-
- /* Nonzero if we should do eager peepholes for conditional branch
- scheduling. */
- #define TARGET_EAGER (target_flags & 8)
-
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #define TARGET_SWITCHES \
- { {"sun4", 0}, \
- {"sparc", 0}, \
- {"fpu", 1}, \
- {"soft-float", -1}, \
- {"epilogue", 2}, \
- {"no-epilogue", -2}, \
- {"sun-asm", 4}, \
- {"eager", 8}, \
- { "", TARGET_DEFAULT}}
-
- #define TARGET_DEFAULT 3
-
- /* target machine storage layout */
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
- #define BITS_BIG_ENDIAN
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* This is true on the SPARC. */
- #define BYTES_BIG_ENDIAN
-
- /* Define this if most significant word of a multiword number is numbered. */
- /* For SPARC we can decide arbitrarily
- since there are no machine instructions for them. */
- /* #define WORDS_BIG_ENDIAN */
-
- /* number of bits in an addressible storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing pointers in memory. */
- #define POINTER_BOUNDARY 32
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 64
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 32
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 32
-
- /* Every structure's size must be a multiple of this. */
- #define STRUCTURE_SIZE_BOUNDARY 8
-
- /* A bitfield declared as `int' forces `int' alignment for the struct. */
- #define PCC_BITFIELD_TYPE_MATTERS
-
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT 64
-
- /* Define this if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT
-
- /* Things that must be doubleword aligned cannot go in the text section,
- because the linker fails to align the text section enough!
- Put them in the data section. */
- #define MAX_TEXT_ALIGN 32
-
- #define SELECT_SECTION(T) \
- { \
- if (TREE_CODE (T) == VAR_DECL) \
- { \
- if (TREE_READONLY (T) && ! TREE_VOLATILE (T) \
- && DECL_ALIGN (T) <= MAX_TEXT_ALIGN) \
- text_section (); \
- else \
- data_section (); \
- } \
- if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
- { \
- if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
- || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
- data_section (); \
- else \
- text_section (); \
- } \
- }
-
- #define SELECT_RTX_SECTION(MODE, X) \
- { \
- if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN) \
- text_section (); \
- else \
- data_section (); \
- }
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- SPARC has 32 fullword registers and 32 floating point registers. */
-
- #define FIRST_PSEUDO_REGISTER 64
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On SPARC, this includes all the global registers
- (registers r[0] through r[7]) and the callee return
- address register, r[15]. */
- #define FIXED_REGISTERS \
- {1, 1, 1, 1, 1, 1, 1, 1, \
- 0, 0, 0, 0, 0, 0, 1, 1, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 1, 1, \
- \
- 1, 1, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0}
-
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- #define CALL_USED_REGISTERS \
- {1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 1, 1, \
- \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1}
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On SPARC, ordinary registers hold 32 bits worth;
- this means both integer and floating point registers. */
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On SPARC, the cpu registers can hold any mode but the float registers
- can only hold SFmode or DFmode. */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((REGNO) < 32 ? ((GET_MODE_SIZE (MODE) <= 4) ? 1 : ((REGNO) & 1) == 0) : \
- ((MODE) == SFmode ? 1 : (MODE) == DFmode && ((REGNO) & 1) == 0))
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- (((MODE1) == SFmode || (MODE1) == DFmode) \
- == ((MODE2) == SFmode || (MODE2) == DFmode))
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* SPARC pc isn't overloaded on a register that the compiler knows about. */
- /* #define PC_REGNUM */
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 14
-
- /* Actual top-of-stack address is 92 greater
- than the contents of the stack pointer register. */
- #define STACK_POINTER_OFFSET 92
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 30
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
- #define FRAME_POINTER_REQUIRED 1
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 30
-
- /* Register in which static-chain is passed to a function. */
- /* ??? */
- #define STATIC_CHAIN_REGNUM 1
-
-
- /* Functions which return large structures get the address
- to place the wanted value at offset 64 from the frame. */
- #define STRUCT_VALUE_OFFSET 64 /* Used only in other #defines in this file. */
- #define STRUCT_VALUE \
- gen_rtx (MEM, Pmode, \
- gen_rtx (PLUS, SImode, stack_pointer_rtx, \
- gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
- #define STRUCT_VALUE_INCOMING \
- gen_rtx (MEM, Pmode, \
- gen_rtx (PLUS, SImode, frame_pointer_rtx, \
- gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The SPARC has two kinds of registers, general and floating point. */
-
- enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS {{0, 0}, {-1, 0}, {0, -1}, {-1, -1}}
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- #define REGNO_REG_CLASS(REGNO) \
- ((REGNO) >= 32 ? FP_REGS : GENERAL_REGS)
-
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS GENERAL_REGS
-
- /* Get reg_class from a letter such as appears in the machine description. */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'f' ? FP_REGS : NO_REGS)
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- For SPARC, `I' is used for the range of constants an insn
- can actually contain.
- `J' is used for the range which is just zero (since that is R0).
- `K' is used for the 5-bit operand of a compare insns. */
-
- #define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
- : (C) == 'J' ? (VALUE) == 0 \
- : (C) == 'K' ? (unsigned) (VALUE) < 0x20 \
- : 0)
-
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
- #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- /* On SPARC, this is the size of MODE in words,
- except in the FP regs, where a single reg is always enough. */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET -16
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On SPARC, don't define this because there are no push insns. */
- /* #define PUSH_ROUNDING(BYTES) */
-
- /* Offset of first parameter from the argument pointer register value.
- This is 64 for the ins and locals, plus 4 for the struct-return reg
- if this function isn't going to use it. */
- #define FIRST_PARM_OFFSET(FNDECL) \
- (DECL_MODE (DECL_RESULT (fndecl)) == BLKmode \
- ? STRUCT_VALUE_OFFSET : STRUCT_VALUE_OFFSET + 4)
-
- /* Offset from top-of-stack address to location to store the
- function parameter if it can't go in a register.
- Addresses for following parameters are computed relative to this one. */
- #define FIRST_PARM_CALLER_OFFSET(FNDECL) \
- (STRUCT_VALUE_OFFSET + 4 - STACK_POINTER_OFFSET)
-
- /* When a parameter is passed in a register, stack space is still
- allocated for it. */
- #define REG_PARM_STACK_SPACE
-
- /* Value is 1 if returning from a function call automatically
- pops the arguments described by the number-of-args field in the call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name. */
-
- #define RETURN_POPS_ARGS(FUNTYPE) 0
-
- /* Some subroutine macros specific to this machine. */
- #define BASE_RETURN_VALUE_REG(MODE) \
- ((MODE) == SFmode || (MODE) == DFmode ? 32 : 8)
- #define BASE_OUTGOING_VALUE_REG(MODE) \
- ((MODE) == SFmode || (MODE) == DFmode ? 32 : 24)
- #define BASE_PASSING_ARG_REG(MODE) (8)
- #define BASE_INCOMING_ARG_REG(MODE) (24)
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
- /* On SPARC the value is found in the first "output" register. */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
-
- /* But the called function leaves it in the first "input" register. */
-
- #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- #define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
-
- /* 1 if N is a possible register number for a function value
- as seen by the caller.
- On SPARC, the first "output" reg is used for integer values,
- and the first floating point register is used for floating point values. */
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
-
- /* 1 if N is a possible register number for function argument passing.
- On SPARC, these are the "output" registers. */
-
- #define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On SPARC, this is a single integer, which is a number of words
- of arguments scanned so far (including the invisible argument,
- if any, which holds the structure-value-address).
- Thus 7 or more means all following args should go on the stack. */
-
- #define CUMULATIVE_ARGS int
-
- /* Define the number of register that can hold parameters.
- This macro is used only in other macro definitions below. */
- #define NPARM_REGS 6
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On SPARC, the offset always starts at 0: the first parm reg is always
- the same reg. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE) ((CUM) = 0)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) / 4 \
- : (int_size_in_bytes (TYPE) + 3) / 4))
-
- /* Determine where to put an argument to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
- /* On SPARC the first six args are normally in registers
- and the rest are pushed. Any arg that starts within the first 6 words
- is at least partially passed in a register unless its data type forbids. */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((CUM) < NPARM_REGS && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
- ? gen_rtx (REG, (MODE), BASE_PASSING_ARG_REG (MODE) + (CUM)) : 0)
-
- /* Define where a function finds its arguments.
- This is different from FUNCTION_ARG because of register windows. */
-
- #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
- ((CUM) < NPARM_REGS && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
- ? gen_rtx (REG, (MODE), BASE_INCOMING_ARG_REG (MODE) + (CUM)) : 0)
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero.
- Any arg that starts in the first 6 regs but won't entirely fit in them
- needs partial registers on the Sparc. */
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- (((CUM) < NPARM_REGS && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE)))\
- && ((CUM) \
- + ((MODE) == BLKmode \
- ? (int_size_in_bytes (TYPE) + 3) / 4 \
- : (GET_MODE_SIZE (MODE) + 3) / 4)) - NPARM_REGS > 0) \
- ? (NPARM_REGS - (CUM)) \
- : 0)
-
- /* Output the label for a function definition. */
-
- #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
- { \
- extern tree double_type_node, float_type_node; \
- if (TREE_TYPE (DECL) == float_type_node) \
- fprintf (FILE, "\t.proc 6\n"); \
- else if (TREE_TYPE (DECL) == double_type_node) \
- fprintf (FILE, "\t.proc 7\n"); \
- else if (TREE_TYPE (DECL) == void_type_node) \
- fprintf (FILE, "\t.proc 0\n"); \
- else fprintf (FILE, "\t.proc 1\n"); \
- ASM_OUTPUT_LABEL (FILE, NAME); \
- }
-
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
- /* On SPARC, move-double insns between fpu and cpu need an 8-byte block
- of memory. If any fpu reg is used in the function, we allocate
- such a block here, at the bottom of the frame, just in case it's needed.
-
- If this function is a leaf procedure, then we may choose not
- to do a "save" insn. Currently we do this only if it touches
- the "output" registers. The "local" and "input" registers
- are off limits. It might be better to allow one such register
- to go to the stack, but I doubt it. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- { \
- extern char call_used_regs[]; \
- extern int current_function_pretend_args_size; \
- extern int frame_pointer_needed; \
- int fsize = (((SIZE) + 7 - STARTING_FRAME_OFFSET) & -8); \
- int actual_fsize; \
- int n_fregs = 0, i; \
- int n_iregs = 64; \
- for (i = 32; i < FIRST_PSEUDO_REGISTER; i++) \
- if (regs_ever_live[i] && ! call_used_regs[i]) \
- n_fregs++; \
- for (i = 16; i < 32; i++) \
- if (regs_ever_live[i]) { n_iregs = 96; break; } \
- fprintf (FILE, "\t!#PROLOGUE# 0\n"); \
- actual_fsize = fsize + n_iregs + (n_fregs*4+7 & -8); \
- fsize += current_function_pretend_args_size+7 & -8; \
- actual_fsize += current_function_pretend_args_size+7 & -8; \
- if (actual_fsize < 4096) \
- fprintf (FILE, "\tsave %%sp,-%d,%%sp\n", actual_fsize); \
- else \
- { \
- fprintf (FILE, "\tsethi %%hi(0x%x),%%g1\n\tadd %%g1,%%lo(0x%x),%%g1\n", \
- -actual_fsize, -actual_fsize); \
- fprintf (FILE, "\tsave %%sp,%%g1,%%sp\n"); \
- } \
- fprintf (FILE, "\t!#PROLOGUE# 1\n"); \
- if (n_fregs) \
- { \
- for (i = 32, n_fregs = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- if (regs_ever_live[i] && ! call_used_regs[i]) \
- { \
- if (regs_ever_live[i+1] && ! call_used_regs[i+1]) \
- fprintf (FILE, "\tstd %s,[%%sp+0x%x]\n", \
- reg_names[i], n_iregs + 4 * n_fregs), \
- n_fregs += 2, i += 1; \
- else \
- fprintf (FILE, "\tstf %s,[%%sp+0x%x]\n", \
- reg_names[i], n_iregs + 4 * n_fregs++); \
- } \
- } \
- if (regs_ever_live[32]) \
- fprintf (FILE, "\tst %s,[%%fp-16]\n\tst %s,[%%fp-12]\n", \
- reg_names[0], reg_names[0]); \
- }
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
- #ifdef sprite
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tcall mcount\n\tnop\n")
- #else
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tsethi %%hi(LP%d),%%o0\n\tcall mcount\n\tor %%lo(LP%d),%%o0,%%o0\n", \
- (LABELNO), (LABELNO))
- #endif
-
- /* Output assembler code to FILE to initialize this source file's
- basic block profiling info, if that has not already been done. */
-
- #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tnop\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
- (LABELNO), (LABELNO))
-
- /* Output assembler code to FILE to increment the entry-count for
- the BLOCKNO'th basic block in this source file. */
-
- #define BLOCK_PROFILER(FILE, BLOCKNO) \
- { \
- int blockn = (BLOCKNO); \
- fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
- \tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
- 4 * blockn, 4 * blockn, 4 * blockn); \
- CC_STATUS_INIT; /* We have clobbered %g1. Also %g2. */ \
- }
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
- extern int may_call_alloca;
- extern int current_function_pretend_args_size;
-
- #define EXIT_IGNORE_STACK \
- (get_frame_size () != 0 \
- || may_call_alloca || current_function_pretend_args_size)
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
-
- /* This declaration is needed due to traditional/ANSI
- incompatibilities which cannot be #ifdefed away
- because they occur inside of macros. Sigh. */
- extern union tree_node *current_function_decl;
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- { \
- extern char call_used_regs[]; \
- extern int may_call_alloca; \
- extern int current_function_pretend_args_size; \
- extern int max_pending_stack_adjust; \
- extern int frame_pointer_needed; \
- int fsize = (((SIZE) + 7 - STARTING_FRAME_OFFSET) & -8); \
- int actual_fsize; \
- int n_fregs = 0, i; \
- int n_iregs = 64; \
- for (i = 32, n_fregs = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- if (regs_ever_live[i] && ! call_used_regs[i]) \
- n_fregs++; \
- for (i = 16; i < 32; i++) \
- if (regs_ever_live[i]) { n_iregs = 96; break; } \
- actual_fsize = fsize + n_iregs + (n_fregs*4+7 & -8); \
- actual_fsize += current_function_pretend_args_size+7 & -8; \
- fsize += current_function_pretend_args_size+7 & -8; \
- if (n_fregs) \
- { \
- char *base; \
- int offset; \
- if (fsize < 4096) \
- { base = "%fp"; offset = n_iregs - actual_fsize; } \
- else \
- { base = "%g1"; offset = n_iregs; \
- if (fsize < 4096) \
- fprintf (FILE, "sethi %%hi(0x%x),%%g1\n\tadd %%g1,%%lo(0x%x),%%g1\n\tadd %%fp,%%g1,%%g1\n", -actual_fsize, -actual_fsize);\
- } \
- for (i = 32, n_fregs = 0; i < FIRST_PSEUDO_REGISTER; i++) \
- if (regs_ever_live[i] && ! call_used_regs[i]) \
- { \
- if (regs_ever_live[i+1] && ! call_used_regs[i+1]) \
- fprintf (FILE, "\tldd [%s%+d],%s\n", \
- base, offset + 4 * n_fregs, \
- reg_names[i]), \
- n_fregs += 2, i += 1; \
- else \
- fprintf (FILE, "\tldf [%s%+d],%s\n", \
- base, offset + 4 * n_fregs++, \
- reg_names[i]); \
- } \
- } \
- fprintf (FILE, "\tret\n\trestore\n"); \
- }
-
- /* If the memory address ADDR is relative to the frame pointer,
- correct it to be relative to the stack pointer instead.
- This is for when we don't use a frame pointer.
- ADDR should be a variable name. */
-
- #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
- { int offset = -1; \
- rtx regs = stack_pointer_rtx; \
- if (ADDR == frame_pointer_rtx) \
- offset = 0; \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- offset = INTVAL (XEXP (ADDR, 1)); \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx) \
- { rtx other_reg = XEXP (ADDR, 1); \
- offset = 0; \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 1) == frame_pointer_rtx) \
- { rtx other_reg = XEXP (ADDR, 0); \
- offset = 0; \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- if (offset >= 0) \
- { int regno; \
- extern char call_used_regs[]; \
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 4; \
- offset -= 4; \
- ADDR = plus_constant (regs, offset + (DEPTH)); } }
-
- /* Addressing modes, and classification of registers for them. */
-
- /* #define HAVE_POST_INCREMENT */
- /* #define HAVE_POST_DECREMENT */
-
- /* #define HAVE_PRE_DECREMENT */
- /* #define HAVE_PRE_INCREMENT */
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
- #define REGNO_OK_FOR_FP_P(REGNO) \
- (((REGNO) ^ 0x20) < 32 || (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32)
-
- /* Now macros that check whether X is a register and also,
- strictly, whether it is in a specified class.
-
- These macros are specific to the SPARC, and may be used only
- in code for printing assembler insns and in conditions for
- define_optimization. */
-
- /* 1 if X is an fp register. */
-
- #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
-
- /* Maximum number of registers that can appear in a valid memory address. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* Recognize any constant value that is a valid address. */
-
- #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
-
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
-
- Anything but a CONST_DOUBLE can be made to work. */
-
- #define LEGITIMATE_CONSTANT_P(X) \
- (GET_CODE (X) != CONST_DOUBLE)
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32)
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT.
- But we can treat a SYMBOL_REF as legitimate if it is part of this
- function's constant-pool, because such addresses can actually
- be output as REG+SMALLINT.
-
- Try making SYMBOL_REF (and other things which are CONSTANT_ADDRESS_P)
- a legitimate address, regardless. Because the only insns which can use
- memory are load or store insns, the added hair in the machine description
- is not that bad. It should also speed up the compiler by halving the number
- of insns it must manage for each (MEM (SYMBOL_REF ...)) involved. */
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { if (GET_CODE (X) == REG) \
- { if (REG_OK_FOR_BASE_P (X)) goto ADDR; } \
- else if (GET_CODE (X) == PLUS) \
- { \
- if (GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
- { \
- if (GET_CODE (XEXP (X, 1)) == REG \
- && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
- goto ADDR; \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && INTVAL (XEXP (X, 1)) >= -0x1000 \
- && INTVAL (XEXP (X, 1)) < 0x1000) \
- goto ADDR; \
- } \
- else if (GET_CODE (XEXP (X, 1)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
- { \
- if (GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
- goto ADDR; \
- if (GET_CODE (XEXP (X, 0)) == CONST_INT \
- && INTVAL (XEXP (X, 0)) >= -0x1000 \
- && INTVAL (XEXP (X, 0)) < 0x1000) \
- goto ADDR; \
- } \
- } \
- else if (CONSTANT_ADDRESS_P (X)) \
- goto ADDR; \
- }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output. */
-
- /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
- { if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
- copy_to_mode_reg (SImode, XEXP (X, 1))); \
- if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
- (X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \
- copy_to_mode_reg (SImode, XEXP (X, 0))); \
- if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
- (X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \
- force_operand (XEXP (X, 0), 0)); \
- if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
- (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
- force_operand (XEXP (X, 1), 0)); \
- if (GET_CODE (x) == SYMBOL_REF) \
- (X) = copy_to_reg (X); \
- if (memory_address_p (MODE, X)) \
- goto WIN; }
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the SPARC this is never true. */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE SImode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- /* #define CASE_VECTOR_PC_RELATIVE */
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 4
-
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS 0
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- #define STORE_FLAG_VALUE 1
-
- /* When a prototype says `char' or `short', really pass an `int'. */
- #define PROMOTE_PROTOTYPES
-
- /* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
- #define SHIFT_COUNT_TRUNCATED
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
-
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE SImode
-
- /* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap. */
- #define NO_FUNCTION_CSE
-
- /* Define subroutines to call to handle multiply and divide.
- Use the subroutines that Sun's library provides.
- The `*' prevents an underscore from being prepended by the compiler. */
-
- #define DIVSI3_LIBCALL "*.div"
- #define UDIVSI3_LIBCALL "*.udiv"
- #define MODSI3_LIBCALL "*.rem"
- #define UMODSI3_LIBCALL "*.urem"
- #define MULSI3_LIBCALL "*.mul"
- #define UMULSI3_LIBCALL "*.umul"
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
- #define CONST_COSTS(RTX,CODE) \
- case CONST_INT: \
- if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) return 0; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 2; \
- case CONST_DOUBLE: \
- return 4;
-
- /* Tell final.c how to eliminate redundant test instructions. */
-
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
-
- /* This holds the value sourcing %hi(%g1). We keep this info
- around so that mem/mem ops, such as increment and decrement,
- etc, can be performed reasonably. */
- #define CC_STATUS_MDEP rtx
-
- /* Nonzero if the results of the previous comparison are
- in the floating point condition code register. */
-
- #define CC_IN_FCCR 04000
-
- /* Nonzero if the results of the previous comparison are
- int the coprocessor's condition code register. */
-
- #define CC_IN_CCCR 010000
-
- /* Nonzero if we know (easily) that floating point register f0
- (f1) contains the value 0. */
- #define CC_F0_IS_0 020000
- #define CC_F1_IS_0 040000
-
- /* Nonzero if we know the value of %hi(%g1). */
- #define CC_KNOW_HI_G1 0100000
-
- #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)
-
- /* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
- #define NOTICE_UPDATE_CC(EXP, INSN) \
- { if (GET_CODE (EXP) == SET) \
- { if (SET_DEST (EXP) == cc0_rtx) \
- { cc_status.flags = 0; \
- cc_status.value1 = SET_DEST (EXP); \
- cc_status.value2 = SET_SRC (EXP); } \
- else if (GET_CODE (SET_SRC (EXP)) == CALL) \
- { CC_STATUS_INIT; } \
- else if (GET_CODE (SET_DEST (EXP)) == REG) \
- { if (cc_status.value1 \
- && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
- cc_status.value1 = 0; \
- if (cc_status.value2 \
- && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
- cc_status.value2 = 0; \
- } \
- else if (GET_CODE (SET_DEST (EXP)) == MEM) \
- { rtx x = cc_status.mdep; int know = cc_status.flags & CC_KNOW_HI_G1; \
- CC_STATUS_INIT; \
- if (x && know) \
- { cc_status.mdep = x; cc_status.flags |= CC_KNOW_HI_G1; } \
- } \
- } \
- else if (GET_CODE (EXP) == PARALLEL \
- && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
- { if (SET_DEST (XVECEXP (EXP, 0, 0)) == cc0_rtx) \
- { cc_status.flags = 0; \
- cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
- cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
- } \
- else if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL) \
- { /* all bets are off */ CC_STATUS_INIT; } \
- else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \
- { if (cc_status.value1 \
- && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1)) \
- cc_status.value1 = 0; \
- if (cc_status.value2 \
- && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2)) \
- cc_status.value2 = 0; \
- } \
- else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \
- { rtx x = cc_status.mdep; int know = cc_status.flags & CC_KNOW_HI_G1; \
- CC_STATUS_INIT; \
- if (x && know) \
- { cc_status.mdep = x; cc_status.flags |= CC_KNOW_HI_G1; } \
- } \
- } \
- else if (GET_CODE (EXP) == PARALLEL) \
- /* insn-peep has changed this insn beyond recognition
- by NOTICE_UPDATE_CC. However, we know it is either
- a call or a branch with a delay slot filled, so we can
- give up on knowing condition codes in any case. */ \
- { CC_STATUS_INIT; } \
- else if (GET_CODE (EXP) == CALL) \
- { /* all bets are off */ CC_STATUS_INIT; } \
- }
-
- /* Control the assembler format that we output. */
-
- /* Output at beginning of assembler file. */
-
- #define ASM_FILE_START(file)
-
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
- #define ASM_APP_ON ""
-
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
- #define ASM_APP_OFF ""
-
- /* Output before read-only data. */
-
- #define TEXT_SECTION_ASM_OP ".text"
-
- /* Output before writable data. */
-
- #define DATA_SECTION_ASM_OP ".data"
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- #define REGISTER_NAMES \
- {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
- "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
- "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
- "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
- "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
- "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
- "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
- "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"} \
-
- /* How to renumber registers for dbx and gdb. */
-
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* On Sun 4, this limit is 2048. We use 1500 to be safe,
- since the length can run past this up to a continuation point. */
- #define DBX_CONTIN_LENGTH 1500
-
- /* This is how to output a note to DBX telling it the line number
- to which the following sequence of instructions corresponds.
-
- This is needed for SunOS 4.0, and should not hurt for 3.2
- versions either. */
- #define ASM_OUTPUT_SOURCE_LINE(file, line) \
- { static int sym_lineno = 1; \
- fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
- line, sym_lineno, sym_lineno); \
- sym_lineno += 1; }
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
- /* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
- #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fputs (".global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
-
- /* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- fprintf (FILE, "_%s", NAME)
-
- /* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM)
-
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s%d", PREFIX, NUM)
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- (isinf ((VALUE)) \
- ? fprintf (FILE, "\t.double 0r%s99e999\n", ((VALUE) > 0 ? "" : "-")) \
- : fprintf (FILE, "\t.double 0r%.20e\n", (VALUE)))
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- (isinf ((VALUE)) \
- ? fprintf (FILE, "\t.single 0r%s99e999\n", ((VALUE) > 0 ? "" : "-")) \
- : fprintf (FILE, "\t.single 0r%.20e\n", (VALUE)))
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE, "\t.word "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* Likewise for `char' and `short' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "\t.half "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "\t.byte "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
-
- /* This is how to output an element of a case-vector that is absolute. */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "\t.word L%d\n", VALUE)
-
- /* This is how to output an element of a case-vector that is relative.
- (SPARC does not use such vectors,
- but we must define this macro anyway.) */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) != 0) \
- fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.skip %d\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- ( fputs (".global ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fputs ("\n.common ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d,\"bss\"\n", (ROUNDED)))
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
- ( fputs ("\n.reserve ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d,\"bss\"\n", (ROUNDED)))
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null.
-
- On SPARC, the CODE can be `r', meaning this is a register-only operand
- and an immediate zero should be represented as `r0'.
- It can also be `m', meaning that X is a memory reference but print
- its address as a non-memory operand. */
-
- #define PRINT_OPERAND(FILE, X, CODE) \
- { if (GET_CODE (X) == REG) \
- fprintf (FILE, "%s", reg_names[REGNO (X)]); \
- else if ((CODE) == 'm') \
- output_address (XEXP (X, 0)); \
- else if (GET_CODE (X) == MEM) \
- { \
- fputc ('[', FILE); \
- output_address (XEXP (X, 0)); \
- fputc (']', FILE); \
- } \
- else if (GET_CODE (X) == CONST_DOUBLE) \
- abort (); \
- else if ((CODE) == 'r' && (X) == const0_rtx) \
- fprintf (FILE, "%%g0"); \
- else if ((CODE) == 'C') switch (GET_CODE (X)) \
- { \
- case EQ: fputs ("e", FILE); break; \
- case NE: fputs ("ne", FILE); break; \
- case GT: fputs ("g", FILE); break; \
- case GE: fputs ("ge", FILE); break; \
- case LT: fputs ("l", FILE); break; \
- case LE: fputs ("le", FILE); break; \
- case GTU: fputs ("gu", FILE); break; \
- case GEU: fputs ("geu", FILE); break; \
- case LTU: fputs ("lu", FILE); break; \
- case LEU: fputs ("leu", FILE); break; \
- } \
- else if ((CODE) == 'N') switch (GET_CODE (X)) \
- { \
- case EQ: fputs ("ne", FILE); break; \
- case NE: fputs ("e", FILE); break; \
- case GT: fputs ("le", FILE); break; \
- case GE: fputs ("l", FILE); break; \
- case LT: fputs ("ge", FILE); break; \
- case LE: fputs ("g", FILE); break; \
- case GTU: fputs ("leu", FILE); break; \
- case GEU: fputs ("lu", FILE); break; \
- case LTU: fputs ("geu", FILE); break; \
- case LEU: fputs ("gu", FILE); break; \
- } \
- else if ((CODE) == 'F') switch (GET_CODE (X)) \
- { \
- case EQ: fputs ("ne", FILE); break; \
- case NE: fputs ("e", FILE); break; \
- case GT: fputs ("ule", FILE); break; \
- case GE: fputs ("ul", FILE); break; \
- case LT: fputs ("uge", FILE); break; \
- case LE: fputs ("ug", FILE); break; \
- default: abort (); \
- } \
- else { output_addr_const (FILE, X); }}
-
- /* Print a memory address as an operand to reference that memory location. */
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- { register rtx base, index = 0; \
- int offset = 0; \
- register rtx addr = ADDR; \
- if (GET_CODE (addr) == REG) \
- { \
- fprintf (FILE, "%s", reg_names[REGNO (addr)]); \
- } \
- else if (GET_CODE (addr) == PLUS) \
- { \
- if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
- offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
- else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
- offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
- else \
- base = XEXP (addr, 0), index = XEXP (addr, 1); \
- fprintf (FILE, "%s", reg_names[REGNO (base)]); \
- if (index == 0) \
- fprintf (FILE, "%+d", offset); \
- else \
- fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
- } \
- else \
- { \
- output_addr_const (FILE, addr); \
- } \
- }
-
-